

Secrets of the Deep Sky

by

The Editors of One-Minute Astronomer

γ Com 14 Com . 16 Com 12 Com

7 Com

NGC 4494 NGC 4565

_23 Com

11 Com

M85

Copyright © 2009 Mintaka Publishing Inc.

Table Of Contents

Introduction	5
PART I: THE SKY	7
How The Sky Moves	8
Celestial Coordinates	10
Estimating Angular Distances in the Sky	13
How To Read A Star Chart	14
The Sky From March To June	16
Northern Hemisphere	16
Southern Hemisphere	18
The Sky From June To September	19
Northern Hemisphere	19
Southern Hemisphere	21
The Sky From September To December	23
Northern Hemisphere	23
Southern Hemisphere	24
The Sky From December To March	26
Northern Hemisphere	26
Southern Hemisphere	27
PART II: EQUIPMENT AND TECHNIQUES	29
Telescope Basics	30
Telescope Specifications: Aperture vs. Magnification	30
Types of Telescopes	32
Refractors	32
Reflectors	34
Compound Telescopes	35
Telescope Mounts	38
Alt-Azimuth Mounts	38
Equatorial Mounts	39
Go-To Mounts	40

Binoculars For Astronomy	41
Binocular Basics	41
Eyepieces	44
The Basics	44
Wide-Field Eyepieces	45
Planetary Eyepieces	46
Barlow Lenses	48
Finders	48
Magnifying Finders	49
Non-Magnifying Finders	50
Light Pollution Filters	53
Averted Vision	55
Dark Adaptation	57
Learning To See	58
Evaluating Atmospheric Conditions	59
Useful Math for Stargazers	61
How To Stay Interested in Astronomy	62
PART III: A LITTLE SCIENCE	66
Stars: A Primer	67
Star Colors	67
The HR Diagram and The Evolution of Stars	69
Measuring Brightness: The Magnitude Scale	70
Variable Stars	72
Double and Multiple Stars	74
Dark Nebulae	75
Diffuse Nebulae	76
Open Star Clusters	78
Planetary Nebulae	79
Globular Star Clusters	81
Galaxies	82
Designations of Stars and Deep-Sky Objects	87
Stars	87

Deep-Sky Objects	87
PART IV: SKY TOURS	89
Tour I: December - March	89
M1 - The Crab Nebula	90
Sirius, The "Dog Star", and the "Pup"	92
Star Cluster M41	94
NGC 2362: The Tau Canis Majoris Cluster	95
M42: The Great Orion Nebula	98
Sigma Orionis	101
Castor (α Geminorum)	103
The Clown Nebula	105
Messier 35	107
Beta Monocerotis	109
Tour 2: March - June	111
The "Beehive" Star Cluster	112
Iota Cancri	114
NGC 4565: The Flying Saucer Galaxy	116
M64, The "Black-Eyed" Galaxy	118
M104, The "Sombrero" Galaxy	119
M87, A Massive Elliptical Galaxy	122
Cor Caroli (the "Heart of Charles")	125
"La Superba"	126
The "Jewel Box" Cluster	127
Tour 3: June - September	130
Dual Galaxies: M81 & M82	131
The Southern Pinwheel	133
The Dark Doodad	135
The Veil Nebula	138
Albireo	140
70 Ophiuchi	141
Rasalgethi (Alpha Herculi)	143

M13, The Hercules Globular Cluster	144
M11, The "Wild Duck Cluster"	146
The False Comet Cluster	148
M17, The Swan Nebula	150
The Castaway Cluster	152
The Dumbbell Nebula	154
Tour 4: September - December	156
47 Tucanae	157
Mira, The "Wonderful Star"	158
Algol, The "Demon Star"	161
The Double Cluster	163
The "Little Andromeda" Galaxy	165
Messier 15	168
The Saturn Nebula	169
The "E.T." Cluster	171
M33, The Triangulum Galaxy	174
EPILOGUE: WHERE TO GO FROM HERE	176

Introduction

Most new stargazers aim their telescopes at bright, nearby celestial objects like the moon, Jupiter, Mars, and Saturn. This is perfectly natural, of course, since these objects are easy to find and present a wealth of detail in a small telescope. And these bright sights, along with others in the solar system, can easily provide a lifetime of exploration and enjoyment for a backyard astronomer. If that's all there was to see, amateur astronomy would still be a challenging and worthy pastime.

Of course, there is more to see beyond our solar system... a whole universe of sights of stunning beauty and infinite variety. That's why it's not long before a backyard astronomer feels the deep desire to look beyond our own celestial backyard into the deep sky, the realm of our own Milky Way galaxy and beyond into the reaches of intergalactic space.

But finding and seeing faint objects in deep space is a little more challenging than observing the moon or Saturn. Many new stargazers are intimidated by finding faint galaxies and nebulae and star clusters with their telescopes. What's worse, upon finding these sights, many beginners are disappointed by the appearance of these objects because they haven't learned to see fine detail through a telescope. And they may not appreciate the awesome natural forces at work in the dim objects in their field of view of their telescope.

This book helps solve these problems. It presents the basics of how and where to find and observe faint objects in the deep sky beyond our solar system, including galaxies, nebulae, star clusters, and multiple and peculiar stars. And it goes through a little of the science behind these objects, so an observer's imagination and intellect can fill in the details a telescope leaves out. A dim, tiny smudge in your eyepiece is so much more impressive when you know it's the sum total of the light from a trillion stars.

For beginning stargazers, or those whose knowledge has lapsed from years away from the telescope, the first sections of this book start out with the basics of the layout and apparent movement of the sky. It covers the main points and planes of reference and the system of celestial coordinates used to locate and specify the positions of objects in the sky. Some tips are also given about how to read star maps, and how to estimate angular distances in the sky. Then, short tours of the night sky get the reader oriented to

what constellations are visible in each season in both the north and south hemispheres, and what types of deep sky objects are generally visible at each time of year.

The next section presents basic information on equipment for the deep-sky observer: telescopes, binoculars, filters, finders, and mounts. And since the best equipment in the world isn't worth much unless the observer has the skill to use it, this section presents the key techniques for seeing faint objects in a telescope.

Then it's time for a bit of science. A little about variable stars and binary stars and the two main types of star clusters. How stars form and evolve and die. How different sorts of nebulae generate light. And a little about galaxies and galaxy shapes. This isn't a comprehensive view, just enough to get a taste of the physical nature of the main types of deep sky objects.

The last section of the book presents detailed summaries and tours of more than 40 deep-sky objects that present excellent views in a small telescope, or in some cases, simply with binoculars or the unaided eye. Almost all of the objects can be seen from most populated areas of the world; a few, as indicated, can be seen only from the northern or only from the southern hemisphere. Objects of all types are chosen: open and globular star clusters, spiral and elliptical galaxies, double, triple, and multiple stars, pulsating and eclipsing variable stars, and diffuse and planetary nebulae where stars are born and die. They're all here. The list is but a short sampling of the thousands of deep-sky objects (or DSO's) visible to backyard astronomers, but it gives a taste of what can be seen by a skillful and enthusiastic observer with modest instruments.

Observing the wonders of the deep sky takes a little effort. But it's worth it. If you read this book carefully, and get out with your telescope to practice what you learn, you will develop a level of expertise that few can match, and see sights that most can scarcely imagine.